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Abstract

An initial-boundary value problem for transient heat conduction in a rectangular parallelepiped is studied. Solutions

for the temperature and heat flux are represented as integrals involving the Green’s function (GF), the initial and

boundary data, and volumetric energy generation. Use of the usual GF obtained by separation of variables leads to

slowly convergent series. To circumvent this difficulty, the dummy time interval of integration is partitioned into a short

time and a long time subintervals where the GFs are approximated by their small and large time representations. This

paper deals with the analysis and implementation of this time partitioning method. � 2002 Elsevier Science Ltd. All

rights reserved.

1. Introduction

Accurate and efficient computation of transient heat

conduction problems are needed for the verification [5,6]

of numerical methods such as the finite difference, finite

element and boundary element methods. Of particular

interest are three-dimensional problems, such as in a

rectangular parallelepiped. The temperature and the

three heat flux components are needed, all to consider-

able accuracy. Obtaining such solutions using classical

methods, such as separation of variables, can be diffi-

cult. A classic procedure for linear nonhomogeneous

boundary conditions is to reduce the problem to one

having homogeneous boundary conditions for the tran-

sient part of the solution and the nonhomogeneous

conditions treated in a related steady state problem. This

procedure is powerful but sometimes does not yield

satisfactory answers for the temperature. Results for the

heat flux are even worse.

An example of evaluation problems using classical

methods can be demonstrated by using a steady state

solution given in Carslaw and Jaeger [3]. This solution is

for prescribed temperature on all six faces of a rectan-

gular parallelepiped. One simple case is for a unit cube

with one surface at a constant nonzero temperature and

the remaining five surfaces at zero temperature. The

solution can be used to derive the normal heat flux at

the center point of the surface with a nonzero temper-

ature. As the number of terms in the double summations

increases, the heat flux oscillates between approximately

�1.5 and 6 in dimensionless units. The methods de-
scribed in this paper do not present such ambiguous

results and are very efficient.

The methods are based on the use of transient

Green’s functions (GFs). The (GFs, for brevity) are used

in integrals for problems involving prescribed bound-

ary and initial conditions and for volumetric energy

generation. The GF is denoted Gðx; x0; y; y0; z; z0; t � sÞ
which for rectangular parallelepipeds can be written as

the product of three one-dimensional GFs. (The GF can

be considered to be the temperature at the point ðx; y; zÞ
and time t for a Dirac delta source at ðx0; y0; z0Þ and time
s.) Two different kinds of GFs are used in the same
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problem by employing the concept of time partitioning.

One kind is derived using the method of separation of

variables and the other is derived using the Laplace

transform. The former kind converges rapidly for ‘‘large’’

t � s and the second kind for small t � s.
To illustrate the method of time partitioning, the

following specific problem for a rectangular parallel-

epiped is studied: The temperature at one of the faces is

raised to a nonzero constant value T0 at time t ¼ 0 while
the temperature at the other five faces are held at zero.

Using the notation in Ref. [2] this problem is denoted

X11B10Y11B00Z11B00T0. (The ‘‘1’’ after X, Y and Z

denotes boundary conditions of the first kind.) The

effects of initial conditions and volumetric energy gen-

eration will be considered. We shall determine the tem-

perature and heat fluxes in the parallelepiped, say to

nine digit accuracy, by the method of time partitioning.

GFs are used to obtain expressions for the temper-

ature and heat fluxes in the form of integrals involving

these GFs Gðx; x0; y; y0; z; z0; t � sÞ, the initial and bound-
ary data, and volumetric energy generation. Difficulty

arises when one wishes to evaluate such integrals as the

GFs do not have uniform convergence properties for all

s in the interval ð0; tÞ of integration. To circumvent this
difficulty the method of time partitioning is used. The

interval of integration ð0; tÞ is partitioned into subin-
tervals ð0; t � tpÞ and ðt � tp; tÞ with some partition time
parameter tp > 0. Large time (large t � s) representa-
tions for the GFs are used in the subinterval ð0; t � tpÞ
while small time (small t � s) representations for the
GFs are used in ðt � tp; tÞ. The situation is similar to the
so-called ‘‘Ewald summation’’ in solid state physics

where the electric potential due to a periodic lattice is

expressed as a sum of a global Fourier type expansion

and an expansion that is local in space. Based on the

Ewald summation Strain [8] developed several compu-

tational algorithms for steady state potential problems.

More recently Linton [4] followed the same idea and

developed computational algorithms for other steady

state problems. It will be shown in this paper that time

partitioning is an accurate and efficient method for tran-

sient as well as steady state heat conduction problems.

The time partitioning method is discussed in Refs.

[2,5] where the general procedure for multi-dimensional

problems is discussed and many short time forms of

GFs are tabulated. The discussion in [2] for three-

dimensional problems, however, is rather limited and

the issues of implementation and the resulting accuracy

improvement are not discussed. Ref. [5] gives a frame-

work for the solution of three-dimensional problems

Nomenclature

EðwÞ shorthand notation for the function

EðwÞ ¼ erfcðw=ð4auÞ1=2Þ
G Green’s function

H overall body length in the y dimension (m)

k thermal conductivity (W/mK)

Kðw; uÞ shorthand notation for the function

Kðw; uÞ ¼ 2ðpuaÞ�1=2 expð�w2=4auÞ
L overall body length in the x dimension (m)

qx heat flux in the x direction qx ¼ �k oT=ox
(W/m2)

r1 another expression for y

r2 another expression for W � y
r3 another expression for z

r4 another expression for H � z
t time (s)

tp partition time (s)

Sðy; uÞ shorthand notation for 1� EðyÞ � EðW � yÞ
Sðz; uÞ shorthand notation for 1� EðzÞ � EðH � zÞ
T temperature (K)

T L long time contribution to the temperature

solution (K)

T S short time contribution to the temperature

solution (K)

T0 surface temperature at x ¼ 0 (K)
u transformation variable, u ¼ t � s (s)

w generic variable for space (m)

W overall body length in the z dimension (m)

x, y, z spatial variables (m)

x0, y0, z0 dummy variables of integration for space
(m)

Greek symbols

a thermal diffusivity, a ¼ k=qc (m2/s)

b eigenvalue (m-1)

d Dirac delta function

s dummy variable of integration for time (s)

xmnp shorthand notation for eigenvalues x2
mnp ¼

b2m=L
2 þ b2n=W

2 þ b2p=H
2

Subscripts

b.c. boundary condition case

in initial condition case

g internal energy generation case

x, y, z direction of applicability for Green’s func-

tions

m, n, p counting integers for eigenvalues in the x, y

and z directions

Superscripts

S short time temperature or Green’s function

L long time temperature or Green’s function
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with an emphasis on obtaining precise numerical results

but does not concern itself with the analysis and the

implementation of the time partitioning method. These

issues will be considered here. Thus the present paper

may be regarded as a companion to [5] as they are in-

tended to complement each other.

It is not unusual to encounter slowly convergent in-

finite series representations for GFs in other scientific

and engineering disciplines. Electromagnetic scattering

problems and water wave theory, for example, provide

many such examples. Depending on the circumstances

quite often classical techniques such as Kummer’s trans-

formation can lead to accelerated convergence of the

series [1]. Other techniques include the use of Poisson’s

summation formula and integral representations. Here

in the time partitioning method rapidly convergent series

representations are used in different time regimes. No

further measures are necessary to accelerate the con-

vergence of the GFs that are used here.

For background materials on heat conduction we

refer the readers to [2,3,7]. Refs. [2,3] provides extensive

background on the use of GFs in solving heat conduc-

tion problems. Both short time and long time GFs are

listed in [2,5]. It has served as a benchmark for heat

conduction solutions for many years. GFs are briefly

addressed in [7], along with other general approaches to

solving heat conduction problems.

This paper is organized as follows. In Section 2

we present the formulation of the problem. Section 3

deals with the implementation of the time partitioning

method. Short time and long time GFs are introduced

in the appropriate integrals which are manipulated an-

alytically. A scheme by which an optimum partition time

can be determined is introduced and a method by which

the optimum partition time may be estimated is given.

The effects of initial condition and volumetric energy

generation are studied. Section 4 contains numerical

results and discussions, and Section 5 contains the

summary and conclusions.

2. Temperature in a rectangular parallelepiped

Consider the region 0 < x < L, 0 < y < W , 0 < z < H
in the three-dimensional space. The temperature T ðx; y;
z; tÞ, for constant material properties and in the pres-
ence of volumetric heat generation, satisfies the heat

equation

o2T
ox2

þ o2T
oy2

þ o2T
oz2

þ 1
k
gðx; y; z; tÞ � 1

a
oT
ot

¼ 0 ð1Þ

where k is the thermal conductivity; a, the thermal dif-
fusivity; and gðx; y; z; tÞ, the volumetric energy genera-
tion. We impose the initial condition

T ðx; y; z; 0Þ ¼ F ðx; y; zÞ ð2Þ

and the boundary conditions of

T ð0; y; z; tÞ ¼ f ðy; z; tÞ; T ðL; y; z; tÞ ¼ T ðx; 0; z; tÞ
¼ T ðx;W ; z; tÞ ¼ T ðx; y; 0; tÞ
¼ T ðx; y;H ; tÞ ¼ 0 ð3Þ

The GF Gðx; x0; y; y0; z; z0; t � sÞ for the problem above
is governed by

o2G
ox2

þ o2G
oy2

þ o2G
oz2

� 1
a
oG
ot

¼ 0; t > s ð4Þ

with the initial condition at t ¼ s

Gðx; x0; y; y0; z; z0; 0Þ ¼ dðx � x0Þdðy � y0Þdðz � z0Þ ð5Þ

and the isothermal boundary conditions

Gð0; x0; y; y0; z; z0; t � sÞ ¼ GðL; x0; y; y0; z; z0; t � sÞ
¼ Gðx; x0; 0; y0; z; z0; t � sÞ
¼ Gðx; x0;W ; y0; z; z0; t � sÞ
¼ Gðx; x0; y; y0; 0; z0; t � sÞ
¼ Gðx; x0; y; y0;H ; z0; t � sÞ
¼ 0 ð6Þ

For a homogeneous parallelepiped it is known that

Gðx; x0; y; y0; z; z0; tÞ can be expressed as the product of
three one-dimensional GFs

Gðx; x0; y; y0; z; z0; t � sÞ ¼ GX ðx; x0; t � sÞGY ðy; y 0; t � sÞ
� GZðz; z0; t � sÞ ð7Þ

where GX ðx; x0; t � sÞ satisfies
o2GX

ox2
� 1

a
oGX

ot
¼ 0 ð8Þ

GX ðx; x0; 0Þ ¼ dðx � x0Þ ð9Þ

GX ð0; x0; tÞ ¼ GX ðL; x0; tÞ ¼ 0 ð10Þ

(GY ðy; y0; t � sÞ and GZðz; z0; t � sÞ satisfy similar equa-
tions.) Such one-dimensional GFs can be found in [2,5]

in various forms.

It is known [2] that the temperature T ðx; y; z; tÞ sub-
ject to the initial and boundary conditions given be Eqs.

(2) and (3) can be expressed as

T ðx; y; z; tÞ ¼ Tb:c:ðx; y; z; tÞ þ Tinðx; y; z; tÞ
þ Tgðx; y; z; tÞ ð11Þ

where

Tb:c:ðx; y; z; tÞ ¼ a
Z t

s¼0
f ðy0; z0; sÞds oGX ðx; 0; t � sÞ

ox0

�
Z W

y0¼0

Z H

z0¼0
GY ðy; y0; t � sÞ

� GZðz; z0; t � sÞdy0 dz0 ð12Þ
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Tinðx; y; z; tÞ ¼
Z L

x0¼0

Z W

y0¼0

Z H

z0¼0
F ðx0; y0; z0ÞGX ðx; x0; tÞ

� GY ðy; y0; tÞGZðz; z0; tÞdx0 dy0 dz0 ð13Þ

Tgðx; y; z; tÞ ¼
a
k

Z t

s¼0
ds

Z L

x0¼0

Z W

y0¼0

Z H

z0¼0
gðx0; y0; z0; sÞ

� GX ðx; x0; t � sÞGY ðy; y0; t � sÞ
� GZðz; z0; t � sÞdx0 dy0 dz0 ð14Þ

We note that Tb:c:ðx; y; z; tÞ above represents the tem-
perature due to the nonhomogeneous boundary condi-

tion, Tinðx; y; z; tÞ represents the temperature due to the
initial condition, and Tgðx; y; z; tÞ represents the temper-
ature due to volumetric energy generation.

For general boundary and initial conditions and vol-

umetric energy generation, the above integrals for Tb:c:,
Tin, and Tg must be computed numerically. We shall
address the question as to how such numerical compu-

tations should proceed in general with the method of

time partitioning later. Let us now consider the simpli-

fied conditions:

f ðy; z; tÞ ¼ T0 ¼ constant

F ðx; y; zÞ ¼ 0

gðx; y; z; tÞ ¼ g0 ¼ constant

ð15Þ

These simplifications enable us to carry out most of our

computations analytically and illustrate better how the

method of time partitioning works.

Let u ¼ t � s we can now rewrite Eqs. (12) and (14)
(which respectively solve the problems X11B10Y11B10-

Z11B10T and X11B00Y11B00Z11B00T0G1)

Tb:c:ðx; y; z; tÞ ¼ aT0

Z t

u¼0

oGX ðx; 0; uÞ
ox0

Z W

y0¼0
GY ðy; y0; uÞdy0

�
Z H

z0¼0
GZðz; z0; uÞdz0 du ð16Þ

Tgðx; y; z; tÞ ¼
ag0
k

Z t

u¼0

Z L

x0¼0
GX ðx; x0; uÞdx0

�
Z W

y0¼0
GY ðy; y0; uÞdy0

�
Z H

z0¼0
GZðz; z0; uÞdz0 du ð17Þ

(Notice that Tinðx; y; z; tÞ now is identically zero.) The

corresponding expressions for the heat fluxes are given

by the negatives of the spatial derivatives multiplied by

k. For example, the heat flux qb:c: xðx; y; z; tÞ in the x-

direction corresponding to Tb:c:ðx; y; z; tÞ above is given
by

qb:c: xðx; y; z; tÞ ¼ �akT0

Z t

s¼0

o2GX ðx; 0; uÞ
oxox0

�
Z W

y0¼0
GY ðy; y0; uÞdy0

�
Z H

z0¼0
GZðz; z0; uÞdz0 du ð18Þ

We shall use such expressions for the heat fluxes and

present some numerical results later.

3. The method of time partitioning

In this section we shall illustrate the method of time

partitioning by considering the computation of Tb:c:ðx; y;
z; tÞ given in Eq. (16). For brevity we shall drop the
subscripts b.c. The expression involves integration with

respect to u from 0 to t. We partition the interval ð0; tÞ
into the subintervals ð0; tpÞ and ðtp; tÞ, where tp is a time
partitioning parameter, and use the short time and

long time expressions for the GFs in the respective

subintervals. We then consider the computational prob-

lems.

3.1. Short time and long time Green’s functions

In the subinterval for u in ð0; tpÞ the short time GFs
may be represented by

GX ðx; x0; uÞ ’ GSX ðx; x0; uÞ ð19Þ

GY ðy; y0; uÞ ’ GSY ðy; y0; uÞ ð20Þ

GZðz; z0; uÞ ’ GS
Zðz; z0; uÞ ð21Þ

where [2]

GS
X ðx; x0; uÞ ¼

XM
m¼�M

ðKð2mL þ x � x0; uÞ

� Kð2mL þ x þ x0; uÞÞ ð22Þ

GS
Y ðy; y0; uÞ ¼

XN

n¼�N

ðKð2nW þ y � y0; uÞ

� Kð2nW þ y þ y0; uÞÞ ð23Þ

GS
Zðz; z0; uÞ ¼

XP

p¼�P

ðKð2pH þ z � z0; uÞ

� Kð2pH þ z þ z0; uÞÞ ð24Þ

and

Kðw; uÞ ¼ 1

ð4apuÞ1=2
expð�w2=ð4auÞÞ ð25Þ

Exact expressions are recovered as M, N and P are al-

lowed to go to infinity.

4270 D.H.Y. Yen et al. / International Journal of Heat and Mass Transfer 45 (2002) 4267–4279



The expressions given in Eqs. (22)–(24) can be de-

rived using the method of images or the method of

Laplace transforms. These expressions converge rapidly

for small au=L2 as only a few terms are needed for ac-
curate results; that is, M, N and P need be only one or

two for accurate values.

In the subinterval for u in ðtp; tÞ ðt > tpÞ we have the
representations for the GFs obtained by eigenfunction

expansions,

GL
X ðx; x0; uÞ ’

2

L

XM
m¼1

expð�b2mau=L2Þ sinbmx
L

� sin
bmx

0

L
ð26Þ

GL
Y ðy; y0; uÞ ’

2

W

XN

n¼1
expð�b2nau=W

2Þ sinbny
W

� sin
bny

0

W
ð27Þ

GL
Z ðz; z0; uÞ ’

2

H

XP

p¼1
expð�b2pau=H

2Þ sin
bpz

H

� sin
bpz

0

H
ð28Þ

where bq ¼ q=p andM, N and P need not be the same as
those in Eqs. (22)–(24). These representations are valid

for all u except near u¼ 0, but are most computationally
efficient for au=L2, au=W 2 or au=H 2 not too small.

Let us introduce the functions

T Sb:c:ðx; y; z; tÞ ¼ aT0

Z t

0

oGS
X ðx; 0; uÞ
ox0

�
Z W

y0¼0
GSY ðy; y0; uÞdy0

�
Z H

z0¼0
GS

Zðz; z0; uÞdz0 du; t6 tp ð29Þ

T Lb:c:ðx; y; z; t; tpÞ ¼ aT0

Z t

tp

oGL
X ðx; 0; uÞ
ox0

Z W

y0¼0
GLY ðy; y 0; uÞdy 0

�
Z H

z0¼0
GLZ ðz; z0; uÞdz0 du; t > tp ð30Þ

Thus, given tp, we can write

Tb:c:ðx; y; z; tÞ ¼ T Sb:c:ðx; y; z; tÞ; t6 tp ð31Þ

Tb:c:ðx; y; z; tÞ ¼ T Sðx; y; z; tpÞ þ T Lðx; y; z; t; tpÞ; t > tp

ð32Þ

Steady state solutions are obtained by letting t go to

infinity in Eq. (32). The expressions in Eqs. (29) and (30)

represent respectively the short time and long time

contributions to Tb:c:ðx; y; z; tÞ, which are considered in
the next two sections.

3.2. Short time computation

In this section a simple approximation is used. When

the series in Eqs. (22)–(24) are substituted into Eq. (29)

and are truncated, errors arise due to the y0- and z0-in-
tegrations as well as the u-integration. Consider the y0-
integration in Eq. (29). Substitute the truncated small

time GF GS
Y

GSY ðy; y0; uÞ ’ Kðy � y0; uÞ � Kðy þ y0; uÞ
þ Kð2W � y þ y0; uÞ � Kð2W � y � y0; uÞ
þ Kð2W þ y � y0; uÞ ð33Þ

into the y0-integral to obtainZ W

y0¼0
GS

Y ðy; y0; uÞdy0 ¼ 1� EðyÞ � EðW � yÞ

þ EðW þ yÞ þ Eð2W � yÞ

� 1
2
ðEð2W þ yÞ þ Eð3W � yÞÞ

ð34Þ

where

EðwÞ ¼ erfc wffiffiffiffiffiffiffiffi
4au

p
� �

ð35Þ

and erfc denotes the complementary error function [1].

The function E decays rapidly as w=ð4auÞ1=2 increases.
(Notice that 0 < y < W :Þ Thus in this simple approxi-
mation we truncate the right side of Eq. (34) after the

‘‘1’’ and work with the dimensionless time au=W 2 up to

no higher than 0.05 in practice for the short time GFs.

Similar arguments can be made for GS
Z . With the y0- and

z0-integrals being replaced by unity we have in essence
replaced the three-dimensional problem by a one-

dimensional problem for short time.

We now consider the u-integrations for T Sb:c:ðx; y; z; tÞ.
We take

GSX ðx; x0; uÞ ’ Kðx � x0; uÞ � Kðx þ x0; uÞ
� Kð2L � x � x0; uÞ þ Kð2L � x þ x0; uÞ
þ Kð2L þ x � x0; uÞ þ ½Kð2L þ x þ x0; uÞ�

ð36Þ

(through second reflections). As the source term is taken

to be x0 ¼ 0, the left end of the interval of interest, the
reflection at the left end is more significant than that at

the right end and there is a rearrangement of the order

of magnitude of the terms. Thus it is advantageous to

add the extra left reflection term (in brackets) in Eq. (36)

which accounts for the third reflection. Substituting Eq.

(36) into Eq. (29) and carrying out the x0-differentiation
and the u-integration leads to, for t6 tp
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T Sb:c:ðx; y; z; tÞ ’ T0

Z t

u¼0
ðxKðx; uÞ � ð2L � xÞKð2L � x; uÞ

þ ð2L þ xÞKð2L þ x; uÞÞ du
u

¼ T0 erfc
xffiffiffiffiffiffiffi
4at

p
� ��

� erfc 2L � xffiffiffiffiffiffiffi
4at

p
� �

þ erfc 2L þ xffiffiffiffiffiffiffi
4at

p
� ��

ð37Þ

For small t and x not near L the first term in Eq. (37)

alone provides good approximation

T Sb:c:ðx; y; z; tÞ ’ T0 erfc
xffiffiffiffiffiffiffi
4at

p
� �

ð38Þ

which is the one-dimensional solution for a semi-infinite

solid.

To account for the three-dimensional effects we in-

clude the functions EðyÞ and EðW � yÞ and similar

functions of z in the y0- and z0-integrations in Eq. (29).
We have, instead of Eq. (37),

T Sb:c:ðx; y; z; tÞ ’ T0

Z t

u¼0
ðxKðx; uÞ � ð2L � xÞKð2L � x; uÞ

þ ð2L þ xÞKð2L þ x; uÞÞ

� Sðy; uÞSðz; uÞdu
u

ð39Þ

where

Sðy; uÞ ’ 1� erfc yffiffiffiffiffiffiffiffi
4au

p
� �

� erfc W � yffiffiffiffiffiffiffiffi
4au

p
� �

ð40Þ

Sðz; uÞ ’ 1� erfc zffiffiffiffiffiffiffiffi
4au

p
� �

� erfc H � zffiffiffiffiffiffiffiffi
4au

p
� �

ð41Þ

Expanding Eq. (39) above and dropping higher order

terms leads to

T Sb:c:ðx; y; z; tÞ ’ T0

Z t

u¼0
ðxKðx; uÞ

(
� ð2L � xÞKð2L � x; uÞ

þ ð2L þ xÞKð2L þ xÞÞ du
u
�
Z t

u¼0
ðxKðx; uÞ

� ð2L � xÞKð2L � x; uÞ þ ð2L þ xÞKð2L

þ xÞÞ
X4
i¼1
erfc

riffiffiffiffiffiffiffiffi
4au

p
� �

du
u

þ
Z t

u¼0
xKðx; uÞ

�
X2
i¼1

X4
j¼3
erfc

riffiffiffiffiffiffiffiffi
4au

p
� �

erfc
rjffiffiffiffiffiffiffiffi
4au

p
� �

du
u

)

ð42Þ

where

r1 ¼ y; r2 ¼ W � y; r3 ¼ z; r4 ¼ H � z ð43Þ

We see that for small u and for y not near zero orW and

z not near zero or H, Sðy; uÞ and Sðz; uÞ in Eqs. (40) and

(41) can both be approximated by unity and hence the

short time computation reduces to the one-dimensional

expression in Eq. (37). Also, for small u and x not close

to L, Eq. (37) further reduces to the well-known result in

Eq. (38). Differentiating Eq. (38) with respect to x and

setting x ¼ 0 leads to

qSb:c: xð0; tÞ ¼
kT0ffiffiffiffiffiffiffi
pat

p ð44Þ

Consider the case of small time but for y and z near

an edge, say y ¼ z ¼ 0. For small y and z we have from

Eq. (39) or (42)

T Sb:c:ðx; y; z; tÞ ’ T0

Z t

u¼0
xKðx; uÞ

� erf yffiffiffiffiffiffiffiffi
4au

p
� �

erf
zffiffiffiffiffiffiffiffi
4au

p
� �

du
u

ð45Þ

This equation gives the exact solution for the octant

x > 0, y > 0, z > 0 with temperature T0 on x ¼ 0 and
zero temperature along y ¼ 0 and z ¼ 0: Differentiating
Eq. (45) above with respect to x yields

qSb:c: xðx; y; z; tÞ ’ �kT0

Z t

u¼0
Kðx; uÞ 1

�
� x2

2au

�

� erf yffiffiffiffiffiffiffiffi
4au

p
� �

erf
zffiffiffiffiffiffiffiffi
4au

p
� �

du
u

ð46Þ

In the general case it is possible to pursue the com-

putation analytically using Eq. (42), but we shall omit

the details here. Some numerical results on the three-

dimensional improvements using Eq. (42) and based on

numerical integrations will be reported later in the

paper.

3.3. Long time computation

We now return to Eq. (30) for T Lb:c:ðx; y; z; t; tpÞ. With
the long time GF GL

Y and GL
Z given in Eqs. (27) and (28)

the y0- and z0-integrations can be carried out to getZ W

y0¼0
GLY ðy; y0; uÞdy0

¼
4
PN

n¼1
1
bn
expð�b2nau=W

2Þ sinðbny=W Þ n odd

0; n even

(

ð47Þ

Z H

z0¼0
GL

Z ðz; z0; uÞdz0

¼
4
PP

p¼1
1
bp
expð�b2pau=H

2Þ sinðbpz=HÞ p odd

0; p even

(

ð48Þ
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Performing the u-integration in Eq. (30) now results in

T Lb:c:ðx; y; z; tÞ ¼
Z t

tp

XM
m¼1

XN

n¼1 odd

XP

p¼1 odd

� expð�x2
mnpauÞfmnpðx; y; zÞdu

¼
XM
m¼1

XN

n¼1 odd

XP

p¼1 odd
fmnpðx; y; zÞ

�
expð�x2

mnpatpÞ � expð�x2
mnpatÞ

ax2
mnp

ð49Þ

where

fmnpðx; y; zÞ ¼
32aT0bm

L2bnbp
sinðbmx=LÞ sinðbny=W Þ

� sinðbpz=HÞ ð50Þ

x2
mnp ¼ b2m=L

2 þ b2n=W
2 þ b2p=H

2 ð51Þ

It is seen that there are two triple series in Eq. (49)

above. The first triple series (associated with tp in the
numerator) is slowly convergent as tp tends to zero. The
terms in the series then decay like bm=bnbpx

2
mnp, i.e., they

decay algebraically. The situation becomes even worse

when one wishes to compute the heat fluxes, for then the

terms are multiplied further by bm, bn or bp through

differentiation with respect to x, y or z and the decay

becomes even slower, if at all.

The difficulty associated with small tp above is cir-
cumvented by the method of time partitioning in that

the short time contribution is treated by the short time

GFs. The right-hand side of Eq. (49) converges rapidly

for tp bounded away from zero, owing to the exponential
decay of the factors expð�x2

mnpatpÞ and expð�x2
mnpatÞ for

large m, n and p. More specifically, since

e�15 ¼ 3:06E�7; e�20 ¼ 2:06E�9; e�23 ¼ 1:03E�10
ð52Þ

we may, by restricting the arguments in the exponential

to an appropriate value, ensure the solution to be at least

as accurate as these values. For example, by choosing

the argument to be 20 (as done for the computations

given below), the error in the values should be less than

E�10. Notice that the denominator also reduces the
contribution of the larger values of m, n and p.

3.4. The optimum partition time tp

For a general parallelepiped whose L,W and H may

not be all equal, one can have partition times atp1=L2,
atp2=W 2 and atp3=H 2. The parameters tp1, tp2 and tp3
subdivide the interval ð0; tÞ into four subintervals in each
of which the appropriate short time and long time GFs

for GX , GY and GZ are to be substituted. Alternatively,

when L,W and H do not differ appreciably, we may use

a single partition time atp=L2. We now consider the case
with a single partition time and show how to optimize it.

As discussed earlier, given a set of truncated short

time GFs, we can compute T Sb:c:ðx; y; z; tÞ for at=L2 up to
atp=L2. For small atp=L2 the error is small but then the
computation for T Lb:c:ðx; y; z; t; tpÞ requires large number
of terms. We wish to determine the optimum tp i.e.,
the largest tp such that T Sb:c:ðx; y; z; t; tpÞ remains accurate
to prescribed accuracy. A scheme to accomplish this is

given below.

We select a sequence tðnÞp such that tðnþ1Þp ’ 2tðnÞp ,
starting with s small tp. We fix ðx; y; zÞ and some large t
(which may be taken as infinity if a steady state solution

exists). We compute, either analytically or numerically,

the sums

T Sb:c:ðx; y; z; tðnÞp Þ þ T Lb:c:ðx; y; z; t; tðnÞp Þ

as n increases and compare the consecutive sums. For

small n the differences between the consecutive sums will

be small. As n increases differences between the consec-

utive sums increase due to errors in the short time

contributions (as the error in the long time contribution

is controlled). The first n at which the deviation of the

sum at tðnþ1Þp from that at tðnÞp exceeds the prescribed error

tolerance determines the optimum tp given by tðnÞp . It
should be noted that the optimum tp depends on the
observation point ðx; y; zÞ.
We now present a method by which the optimum

partition time may be estimated. Consider a semi-infinite

body subject to a step change in temperature at the

surface x ¼ 0 (the X10B1T0 problem). The solution is
given in Eq. (38) with T0 ¼ 1. For an interior point it
takes a dimensionless time at=x2 ¼ 0:012 to cause a
temperature rise of one part in 1010. We shall refer to

this as the ‘‘wave time’’. For the three-dimensional

problem X11B10Y10B00Z11B00B00T0 the solution at

ðx; y; zÞ may be approximated by the one-dimensional
solution until the two- or three-dimensional effects reach

that point. Assuming that x6 y 6L=2 and y 6 z, the
distance from ðx; y; zÞ to the nearest boundary is given by
minðx2 þ y2; x2 þ z2Þ ¼ x2 þ y2. We suppose that the

speed of propagation of three-dimensional effects is gov-

erned by at=ðx2 þ y2Þ ¼ 0:012 and hence t ¼ 0:012ðx2þ
y2Þ=a ¼ t1. Thus the one-dimensional approximation is
accurate for t6 t1: and t1 gives the optimum time tp at
which the solution ceases to be one-dimensional and

errors due to three-dimensional effects begin to emerge

(see the discussions in Section 4).

3.5. Temperature due to volumetric energy generation and

initial condition

The temperature expression for Tgðx; y; z; tÞ due to
volumetric energy generation given in Eq. (14) may be

rewritten as
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Tgðx; y; z; tÞ ¼ T Sg ðx; y; z; tÞ; t6 tp ð53Þ

Tgðx; y; z; tÞ ¼ T Sg ðx; y; z; tpÞ þ T Lg ðx; y; z; t; tpÞ t > tp

ð54Þ

where

T Sg ðx; y; z; tÞ ¼
ag0
k

Z t

u¼0

Z L

x0¼0
GS

X ðx; x0; uÞdx0

�
Z W

y0¼0
GS

Y ðy; y0; uÞdy0

�
Z H

z0¼0
GSZðz; z0; uÞdz0 du ð55Þ

T Lg ðx; y; z; t; tpÞ ¼
ag0
k

Z t

tp

Z L

x0¼0
GL

X ðx; x0; uÞdx0

�
Z W

y0¼0
GL

Y ðy; y0; uÞdy0

�
Z H

z0¼0
GLZ ðz; z0; uÞdz0 du ð56Þ

With GSX given in Eq. (36), G
S
Y given in Eq. (33) and

a similar expression for GS
Z we can carry out the

integrations with respect to x0, y0 and z0 in Eq. (55) and
obtain

T Sg ðx;y;z; tÞ’
ag0
k

Z t

u¼0
ð1�EðxÞ�EðL� xÞ

�EðyÞ�EðW � yÞ�EðZÞ�EðH � zÞÞdu
ð57Þ

where only low order terms are retained. Carrying out

the u-integration then yields

T Sg ðx; y; z; tÞ ’
ag0
k

t
	

� 4tði2Þerfc xffiffiffiffiffiffiffi
4at

p
� �

þ i2 erfc L � xffiffiffiffiffiffiffi
4at

p
� �

þ i2 erfc yffiffiffiffiffiffiffi
4at

p
� �

þ i2 erfc W � yffiffiffiffiffiffiffi
4at

p
� �

þ i2 erfc zffiffiffiffiffiffiffi
4at

p
� �

þ i2 erfc H � zffiffiffiffiffiffiffi
4at

p
� �


ð58Þ

For definition of i2 erfc (see [1] or [2]).

Similarly, with the long time GFs given in Eqs. (26)–

(28) we can carry out the x0-integration, and substitute
into Eq. (56) along with the y0- and z0-integrations in
Eqs. (47) and (48) and obtain

T Lg ðx; y; z; t; tpÞ ¼
Z t

tp

XM
m¼1 odd

XN

n¼1 odd

XP

p¼1 odd

� expð�x2
mnpauÞ ~ffmnpðx; y; zÞdu

¼
XM

m¼1 odd

XN

n¼1 odd

XP

p¼1 odd

~ffmnpðx; y; zÞ

�
expð�x2

mnpatpÞ � expð�x2
mnpatÞ

ax2
mnp

ð59Þ

where

~ffmnpðx; y; zÞ ¼
64ag0
bmbnbp

sinðbmx=LÞ sinðbny=W Þ

� sinðbpz=HÞ ð60Þ

x2
mnp ¼ b2m=L

2 þ b2n=W
2 þ b2p=H

2 ð61Þ

An optimum partition time tp may be obtained using the
same scheme in Section 3.4, regardless whether the in-

tegrations are done analytically or numerically as in the

case when gðx; y; z; tÞ is not a constant.
Due to more general initial condition the temperature

Tinðx; y; z; tÞ is given by Eq. (13). This expression involves
integrations with respect to x0, y0 and z0 but not with
respect to t. A partition time tp may be introduced such
that the short time and long time GFs are substituted for

t6 tp and t > tp respectively, resulting in the expressions
T Sin and T Lin . An optimum tp may be obtained by finding
the first tp, as it increases from zero, at which T Sin be-
comes unequal to T Lin to a prescribed error.

4. Numerical results and discussions

We first consider the temperature Tb:c: at the center of
a cube with side length L. The steady state temperature

there is known to be T0=6. It is seen in Section 3.2 that,
given a set of truncated short time GFs, approximations

to T Sb:c:ðx; y; z; tÞ can be obtained for short time t up to tp.
One does not know in general, however, the precise er-

rors in such approximations, except that they tend to

zero as tp tends to zero. On the other hand, we see in
Section 3.3 that, given a tp, errors in the long time
contribution T Lb:c:ðx; y; z; t; tpÞ can be controlled by prop-
erly restricting the arguments of the exponentials in the

series.

Table 1 shows the results for various dimensionless

partition times atp=L2. These partition times are given in
column 1. The second column shows the short time so-

lutions T Sb:c:ð0:5L; 0:5L; 0:5L; tpÞ=T0 given by Eq. (3) which
increase as atp=L2 increases. The fourth column shows
the number of terms in the long time computations for

T Lb:c:ð0:5L; 0:5L; 0:5L;1; tpÞ=T0, the results of which are
given in column 3. Column 5 gives the sum of columns 2
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and 3 and is the steady state solution. Because of the

errors in the short time results in column 2, the sum is

not constant in column 5, except for t equal to or less

than the optimum tp (which is bold). Column 6 shows
the transient temperatures at various at=L2 ¼ atp=L2 ob-
tained by subtracting column 3 from the optimal steady

state values given in column 5. These values are accurate

to about 10 decimal places.

We now make some further observations regarding

Table 1. For atp=L26 0:006, the numerical values for the
steady state solution are accurate to nine digits. At lar-

ger values of atp=L2, the errors are due to the short time
contributions. The amount of computation for large

time contributions decreases with increasing atp=L2. By
increasing atp=L2 from 0.001 to 0.006, the number of

terms needed in the long time series drop from 5950 to

398. Prior to atp=L2 ¼ 0:006, the entries in column 3,
which are used to obtain the steady state solutions, need

not be computed. This is because the steady state results

in columns 5 remain the same, independent of tp for the
latter through atp=L26 0:006 and thus can be obtained
from the entry at atp=L2 ¼ 0:006. We shall precede such
entries with an asterisk to indicate the fact that they need

not be computed. As noted before, transient solutions

for atp=L2 > 0:006 are given by subtracting column 3
from the steady state solution given in column 5 at

atp=L2 ¼ 0:00 whereas those for atp=L26 0:006 are those

given in column 2. We note also that this tp corre-
sponding to atp=L2 ¼ 0:006 plays the role of the opti-
mum tp discussed in Section 3.4. Rows corresponding to
an optimum partition time are bold in the tables. We

note that in terms of the estimated optimum partition

time t1 we have at1=L2 ¼ 0:006.
We have studied the temperature Tb:c:ðx; y; z; tÞ along

the centerline y ¼ 0:5L, z ¼ 0:5L at different values of
x=L and found that as x=L increases, the onset of de-
tectable error in the steady state temperature computa-

tions is delayed with time. This is to be expected since

the time required for heat to diffuse through the material

is inversely proportional to the square of distance.

Conversely, once an error becomes measurable in each

of the calculations, the magnitude of the error becomes

significantly greater, at larger x=L values, for the same
dimensionless times. This is due to the edge effects of the

parallelepiped, since the point of interest is closer to the

T ¼ 0 surfaces than to the T ¼ T0 surface with a large
value of x=L.
Table 2 shows the temperatures Tb:c: in a cube where

the observation point ðx; y; zÞ is off the centerline. This
causes the side and edge effects of the cube to be much

more pronounced. We have the optimal time in this case

of at1=L2 ¼ 0:0015:
We present in Table 3 the heat flux at the heating

surface in the boundary condition case. One interesting

Table 1

One-dimensional approximation using time partitioning to determine the center, x ¼ 0:5L, y ¼ 0:5L, z ¼ 0:5L, temperature of a cube

Dimensionless

time atp=L2
Dimensionless short

time solution T Sb:c:=T0
Dimensionless long

time solution

T Lb:c:=T0

Number of terms for

convergence of the long

time solution

Sum of short and long

time solutions

ðT Sb:c: þ T Lb:c:Þ=T0

True solution

Tb:c:=T0

0.001 0.0000000000 0.1666666666 5950 0.1666666666 0.0000000000

0.0025 0.0000000000 0.1666666667 1499 0.1666666667 0.0000000000

0.005 0.0000005733 0.1666660934 534 0.1666666667 0.0000005733

0.006 0.0000050103 0.1666616564 398 0.1666666667 0.0000050103

0.01 0.0004069520 0.1662600459 184 0.1666669979 0.0004066209

0.025 0.0253473187 0.1425826072 45 0.1679299259 0.0240840595

0.05 0.1138441966 0.0767761685 17 0.1906203651 0.0898904982

0.1 0.2627562698 0.0178042207 7 0.2805604905 0.1488624461

0.25 0.4460122207 0.0002098182 1 0.4462220388 0.1664568486

0.5 0.4958800056 0.0000001280 1 0.4958801335 0.1666665388

0.75 0.5036468697 0.0000000000 1 0.5036468697 0.1666666667

1 0.5119291152 0.0000000000 1 0.5119291152 0.1666666667

The long time solution was truncated when the exponent term reached a magnitude of 20. Entries preceded by an asterisk need not be

computed. The bold values represent the optimum partition time.
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Table 2

One-dimensional approximation using time partitioning to determine the center, x ¼ 0:25L, y ¼ 0:25L, z ¼ 0:25L, temperature of a
cube

Dimension-

less time

atp=L2

Dimensionless

short time solu-

tion T Sb:c:=T0

Dimensionless long

time solution

T Lb:c:=T0

Number of terms for

convergence of the long

time solution

Sum of short and long

time solutions

ðT Sb:c: þ T Lb:c:Þ=T0

True solution

Tb:c:=T0

0.0005 0.0000000000 0.3072056232 33366 0.3072056232 0.0000000000

0.001 0.0000000227 0.3072056006 11722 0.3072056233 0.0000000226

0.0015 0.0000050103 0.3072006130 6365 0.3072056233 0.0000050103

0.0025 0.0004069520 0.3067988368 2940 0.3072057888 0.0004067864

0.005 0.0124193307 0.2949398938 1027 0.3073592245 0.0122657294

0.01 0.0770998717 0.2358973730 353 0.3129972448 0.0713082502

0.025 0.2635524773 0.1070520385 84 0.3706045158 0.2001535847

0.05 0.4291952691 0.0371669176 30 0.4663621868 0.2700387056

0.1 0.5760594979 0.0067605440 11 0.5828200420 0.3004450792

0.25 0.7118079976 0.0000742459 2 0.7118822435 0.3071313773

0.5 0.7469179802 0.0000000452 1 0.7469180255 0.3072055780

0.75 0.7514071819 0.0000000000 1 0.7514071819 0.3072056232

1 0.7553706246 0.0000000000 1 0.7553706246 0.3072056232

The long time solution was truncated when the exponent term reached a magnitude of 20. Entries preceded by an asterisk need not be

computed. The bold values represent the optimum partition time.

Table 3

One-dimensional approximation using time partitioning to determine the dimensionless heat flux in the x direction, at x ¼ 0, y ¼ 0:5L,
z ¼ 0:5L, in a cube

Dimension-

less time

atp=L2

Dimensionless short

time solution

qSx b:c:L=kT0

Dimensionless long

time solution

qLx b:c:L=kT0

Number of terms for

convergence of the long

time solution

Sum of short and long

time solutions

ðqSx b:c: þ qSx b:c:ÞL=kT0

True solution

qx b:c:L=kT0

0.001 17.84124116 �15.39512228 11722 2.44611888 17.84124116

0.0025 11.28379167 �8.83767280 2940 2.44611887 11.28379167

0.003 10.30064539 �7.85452651 2251 2.44611888 10.30064539

0.005 7.97884561 �5.53272742 1027 2.44611819 7.97884630

0.01 5.64189584 �3.19642463 353 2.44547121 5.64254351

0.025 3.56824823 �1.17765461 84 2.39059362 3.62377349

0.05 2.52313253 �0.36830740 30 2.15482513 2.81442628

0.1 1.78428611 �0.06179511 11 1.72249100 2.50791399

0.25 1.16971314 �0.00065997 2 1.16905317 2.44677885

0.5 1.01384843 �0.00000040 1 1.01384802 2.44611928

0.75 0.99492128 0.00000000 1 0.99492128 2.44611888

1 0.97929708 0.00000000 1 0.97929708 2.44611888

The long time solution was truncated when the exponent term reached a magnitude of 23. Entries preceded by an asterisk need not be

computed. The bold values represent the optimum partition time.
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feature of note in Table 3 is the magnitude of the short

and long time solutions at very small dimensionless

times. As the dimensionless time tends toward zero, the

short time solution tends toward infinity. The long time

solution must therefore tend toward negative infinity,

since the steady state heat flux at x ¼ 0 has a constant
value of 2.446118877, and is the sum of the short and

long time solutions. This ‘‘instability’’ at very small di-

mensionless time for the heat fluxes on the heated sur-

face was observed when the maximum exponent was

taken to be �20. For the results in Table 3 we have
increased the maximum value of the exponent to �23.
We mention that, as in the case of temperatures, very

accurate transient heat fluxes may be computed from the

steady state heat flux in column 5 at small tp (or for
atp=L2 ¼ 0:0025 here) and the long time components
of the heat fluxes in column 3. Here we have at1=L2 ¼
0:003:
In Table 4 we present more accurate results for the

short time temperatures by using Eq. (42) that contains

additional terms and carrying out the integrations nu-

merically. The details of the computations are discussed

in [5]. It is seen that the short time solutions remain

accurate over a larger range of atp=L2. This results in a
larger optimum tp corresponding to atp=L2 ¼ 0:05 and a
decrease in the number of terms in the long time com-

putations from 1027 to 30. It is seen that the estimated

optimum partition time based on using t1 is too con-
servative and no longer valid when more terms are used

in the short time component.

In Tables 5 and 6 we present numerical results for the

temperature Tg at the center of a cube and the corre-
sponding heat flux on a face due to a uniform heat

generation g0. The method of time partitioning proceeds
similarly as in the boundary condition case. The results

in Table 5 for the temperature at the center of a cube due

to internal energy generation are comparable to those in

Table 1 for the boundary condition case with a same

optimum partition time. The heat fluxes on a face of the

cube due to internal energy generation given in Table 6

and those due to the heating of a face of the cube given

in Table 3 are also similar, with the same optimum

partition time.

We finally remark that when the observation point is

near a boundary y ¼ 0 or z ¼ 0 say, t1 is small and the
one-dimensional approximations become invalid quickly.

Work is presently in progress to treat such two- or three-

dimensional problems effectively.

5. Summary and conclusions

1. Verification of large finite element and control

volume codes is supported. This is done by providing a

method for finding extremely accurate numerical val-

ues for the linear transient heat conduction equation.

Temperatures and heat fluxes are both calculated. The

geometry of a cube is considered with temperature

boundary conditions on all six surfaces. The classical

method of separation of variables builds the solution

Table 4

Three-dimensional approximation with numerical integration using time partitioning to determine the center, x ¼ 0:5L, y ¼ 0:5L,
z ¼ 0:5L, temperature of a cube

Dimension-

less time

atp=L2

Dimensionless short

time solution

T Sb:c:=T0

Dimensionless long

time solution

T Lb:c:=T0

Number of terms for

convergence of the long

time solution

Sum of short and long

time solutions

ðT Sb:c: þ T Lb:c:Þ=T0

True solution

Tb:c:=T0

0.00500 0.0000005733 0.1666660934 1027 0.1666666667 0.0000005733

0.01000 0.0004066209 0.1662600459 353 0.1666666668 0.0004066208

0.02500 0.0240840593 0.1425826072 84 0.1666666665 0.0240840594

0.05000 0.0898904982 0.0767761685 30 0.1666666667 0.0898904982

0.10000 0.1488624431 0.0178042207 11 0.1666666638 0.1488624460

0.25000 0.1664519853 0.0002098182 2 0.1666618035 0.1664568485

0.50000 0.1666548337 0.0000001280 1 0.1666549617 0.1666665387

0.75000 0.1666547890 0.0000000000 1 0.1666547890 0.1666666667

1.00000 0.1666547878 0.0000000000 1 0.1666547878 0.1666666667

The long time solution was truncated when the exponent term reached a magnitude of 20. Entries preceded by an asterisk need not be

computed. The bold values represent the optimum partition time.
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from two parts, steady state and transient. However,

in the classical steady state solution given by Carslaw

and Jaeger [3], the computed heat flux at the heated

surface oscillates through positive and negative values

as more terms in the summations are included. In con-

trast, the proposed method gives extremely accurate

Table 6

One-dimensional approximation using time partitioning to determine the dimensionless heat flux in the x direction, at x ¼ 0, y ¼ 0:5L,
4z ¼ 0:5L, in a cube with volume energy generation

Dimensionless

time atp=L2
Dimensionless

short time solu-

tion qSx b:c:L=kT0

Dimensionless

long time solu-

tion qLx b:c:L=kT0

Number of terms for

convergence of the long

time solution

Sum of short and long

time solutions

ðqSx b:c: þ qSx b:c:ÞL=kT0

True solution

qx b:c:L=kT0

0.001 �0.0356824823 �0.2461908319 7268 �0.2818733142 �0.0356824823
0.0025 �0.0564189584 �0.2254543559 1875 �0.2818733142 �0.0564189584
0.003 �0.0618038723 �0.2200694419 1388 �0.2818733142 �0.0618038723

0.005 �0.0797884561 �0.2020848645 642 �0.2818733206 �0.0797884497
0.01 �0.1128379167 �0.1690468831 229 �0.2818847999 �0.1128264311
0.025 �0.1784120559 �0.1056567135 51 �0.2840687694 �0.1762166008
0.05 �0.2521785811 �0.0499182734 20 �0.3020968546 �0.2319550408
0.1 �0.3528821768 �0.0113391240 7 �0.3642213008 �0.2705341902
0.25 �0.5139350419 �0.0001335744 1 �0.5140686163 �0.2817397398
0.5 �0.6312536196 �0.0000000815 1 �0.6312537011 �0.2818732327
1 �0.7290967103 0.0000000000 1 �0.7290967103 �0.2818733142

The long time solution was truncated when the exponent term reached a magnitude of 23. Entries preceded by an asterisk need not be

computed. The bold values represent the optimum partition time.

Table 5

One-dimensional approximation using time partitioning to determine the center, x ¼ 0:5L, y ¼ 0:5L, z ¼ 0:5L, temperature of a cube
with volume energy generation

Dimension-

less time

atp=L2

Dimensionless short

time solution

kT Sg =g0L
2

Dimensionless long

time solution

kT Lg =g0L
2

Number of terms for

convergence of the long

time solution

Sum of short and long

time solutions

kðT Sg þ T Lg Þ=g0L2

True solution

kTg=g0L2

0.0025 0.0025000000 0.0537128298 1875 0.0562128298 0.0025000000

0.005 0.0049999988 0.0512128310 642 0.0562128298 0.0049999988

0.006 0.0059999858 0.0502128440 486 0.0562128298 0.0059999858

0.01 0.0099971115 0.0462157170 229 0.0562128285 0.0099971128

0.025 0.0241548870 0.0320325043 51 0.0561873913 0.0241803255

0.05 0.0388948227 0.0157789947 20 0.0546738174 0.0404338351

0.1 0.0306960026 0.0036088667 7 0.0343048692 0.0526039632

0.25 �0.1697883407 0.0000425180 1 �0.1697458227 0.0561703118

0.5 �0.7578355602 0.0000000259 1 �0.7578355342 0.0562128039

1 �2.2947756723 0.0000000000 1 �2.2947756723 0.0562128298

The long time solution was truncated when the exponent term reached a magnitude of 20. Entries preceded by an asterisk need not be

computed. The bold values represent the optimum partition time.
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values (to 9 or more significant figures) without oscilla-

tion.

2. The example of a cube with temperature bound-

ary conditions is treated but the method can be em-

ployed for a parallelepiped with heat flux and convective

boundary conditions in the same manner.

3. New insights are given for the calculation of the

steady state component, which is usually the most dif-

ficult part.

4. A criterion is presented for determining the dura-

tion for the two- and three-dimensional effects to affect

the solution. This criterion is based on an accuracy of

one part in 1010 but can be made more or less if desired.

The criterion is at=ðx2 þ y2Þ ¼ 0:012 where x and y are

less than z and x < L=2 and y < W =2. With this method
the extra computation to generate values with errors

about one part in 109 is less than a factor of 10 than that

required for error of one part in 10,000. This contrasts

significantly with the additional effort required to reduce

errors using the finite element method, for example.

Such accurate results are not much more than for errors

several magnitudes greater, unlike for finite element

methods.

5. The method avoids numerical integration for much

of the body, unlike the time partitioning method of Ref.

[5]. Such integration is implicit in the method. However,

without some extensions the proposed method herein

cannot avoid numerical integration for points near the

corners and edges. Such extensions are under develop-

ment and may be the subject of future papers.
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