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Abstract

An initial-boundary value problem for transient heat conduction in a rectangular parallelepiped is studied. Solutions
for the temperature and heat flux are represented as integrals involving the Green’s function (GF), the initial and
boundary data, and volumetric energy generation. Use of the usual GF obtained by separation of variables leads to
slowly convergent series. To circumvent this difficulty, the dummy time interval of integration is partitioned into a short
time and a long time subintervals where the GFs are approximated by their small and large time representations. This
paper deals with the analysis and implementation of this time partitioning method. © 2002 Elsevier Science Ltd. All

rights reserved.

1. Introduction

Accurate and efficient computation of transient heat
conduction problems are needed for the verification [5,6]
of numerical methods such as the finite difference, finite
element and boundary element methods. Of particular
interest are three-dimensional problems, such as in a
rectangular parallelepiped. The temperature and the
three heat flux components are needed, all to consider-
able accuracy. Obtaining such solutions using classical
methods, such as separation of variables, can be diffi-
cult. A classic procedure for linear nonhomogeneous
boundary conditions is to reduce the problem to one
having homogeneous boundary conditions for the tran-
sient part of the solution and the nonhomogeneous
conditions treated in a related steady state problem. This
procedure is powerful but sometimes does not yield
satisfactory answers for the temperature. Results for the
heat flux are even worse.

* Corresponding author. Tel.: +1-517-332-2712; fax: +1-517-
353-1750.
E-mail address: mcmaste7@msu.edu (R.L. McMasters).

An example of evaluation problems using classical
methods can be demonstrated by using a steady state
solution given in Carslaw and Jaeger [3]. This solution is
for prescribed temperature on all six faces of a rectan-
gular parallelepiped. One simple case is for a unit cube
with one surface at a constant nonzero temperature and
the remaining five surfaces at zero temperature. The
solution can be used to derive the normal heat flux at
the center point of the surface with a nonzero temper-
ature. As the number of terms in the double summations
increases, the heat flux oscillates between approximately
—1.5 and 6 in dimensionless units. The methods de-
scribed in this paper do not present such ambiguous
results and are very efficient.

The methods are based on the use of transient
Green'’s functions (GFs). The (GFs, for brevity) are used
in integrals for problems involving prescribed bound-
ary and initial conditions and for volumetric energy
generation. The GF is denoted G(x,x',y,y,z,7,t— 1)
which for rectangular parallelepipeds can be written as
the product of three one-dimensional GFs. (The GF can
be considered to be the temperature at the point (x,y, z)
and time ¢ for a Dirac delta source at (x',)/,7) and time
1.) Two different kinds of GFs are used in the same
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Nomenclature

E(w) shorthand notation for the function
E(w) = erfc(w/ (4ou)'"?)

G Green’s function

H overall body length in the y dimension (m)

k thermal conductivity (W/mK)

K(w,u) shorthand notation for the function
K(w,u) = 2(nuc)”"* exp(—w? /4ou)

L overall body length in the x dimension (m)

qx heat flux in the x direction g, = —k0T/0x
(W/m?)

r another expression for y

" another expression for W — y

73 another expression for z

74 another expression for H — z

t time (s)

t partition time (s)

S(y,u) shorthand notation for | — E(y) — E(W —y)

S(z,u) shorthand notation for 1 — E(z) — E(H — z)

T temperature (K)

Tt long time contribution to the temperature
solution (K)

T8 short time contribution to the temperature
solution (K)

Ty surface temperature at x = 0 (K)

u transformation variable, u = ¢t — 7 (s)

w generic variable for space (m)

w overall body length in the z dimension (m)

X, y, z spatial variables (m)

X, y,7Z dummy variables of integration for space
(m)

Greek symbols

o thermal diffusivity, « = k/pc (m?/s)

B eigenvalue (m™)

0 Dirac delta function

T dummy variable of integration for time (s)

Opinp shorthand notation for eigenvalues wfnnp =

B /L + B/ W? + B /H?

Subscripts

b.c. boundary condition case

in initial condition case

g internal energy generation case

x, y, z direction of applicability for Green’s func-
tions

m, n, p counting integers for eigenvalues in the x, y
and z directions

Superscripts
S short time temperature or Green’s function
L long time temperature or Green’s function

problem by employing the concept of time partitioning.
One kind is derived using the method of separation of
variables and the other is derived using the Laplace
transform. The former kind converges rapidly for “large”
t — 7 and the second kind for small # — 7.

To illustrate the method of time partitioning, the
following specific problem for a rectangular parallel-
epiped is studied: The temperature at one of the faces is
raised to a nonzero constant value 7j at time ¢ = 0 while
the temperature at the other five faces are held at zero.
Using the notation in Ref. [2] this problem is denoted
X11B10Y11B00Z11B00TO. (The “1 after X, Y and Z
denotes boundary conditions of the first kind.) The
effects of initial conditions and volumetric energy gen-
eration will be considered. We shall determine the tem-
perature and heat fluxes in the parallelepiped, say to
nine digit accuracy, by the method of time partitioning.

GFs are used to obtain expressions for the temper-
ature and heat fluxes in the form of integrals involving
these GFs G(x,x’,y,),z,7,t — 1), the initial and bound-
ary data, and volumetric energy generation. Difficulty
arises when one wishes to evaluate such integrals as the
GFs do not have uniform convergence properties for all
7 in the interval (0, ¢) of integration. To circumvent this
difficulty the method of time partitioning is used. The

interval of integration (0,¢) is partitioned into subin-
tervals (0,7 —t,) and (¢ — t,,¢) with some partition time
parameter #, > 0. Large time (large 7 — 1) representa-
tions for the GFs are used in the subinterval (0,7 —¢,)
while small time (small # — 7) representations for the
GFs are used in (¢ — t,, ). The situation is similar to the
so-called “Ewald summation” in solid state physics
where the electric potential due to a periodic lattice is
expressed as a sum of a global Fourier type expansion
and an expansion that is local in space. Based on the
Ewald summation Strain [8] developed several compu-
tational algorithms for steady state potential problems.
More recently Linton [4] followed the same idea and
developed computational algorithms for other steady
state problems. It will be shown in this paper that time
partitioning is an accurate and efficient method for tran-
sient as well as steady state heat conduction problems.
The time partitioning method is discussed in Refs.
[2,5] where the general procedure for multi-dimensional
problems is discussed and many short time forms of
GFs are tabulated. The discussion in [2] for three-
dimensional problems, however, is rather limited and
the issues of implementation and the resulting accuracy
improvement are not discussed. Ref. [5] gives a frame-
work for the solution of three-dimensional problems
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with an emphasis on obtaining precise numerical results
but does not concern itself with the analysis and the
implementation of the time partitioning method. These
issues will be considered here. Thus the present paper
may be regarded as a companion to [5] as they are in-
tended to complement each other.

It is not unusual to encounter slowly convergent in-
finite series representations for GFs in other scientific
and engineering disciplines. Electromagnetic scattering
problems and water wave theory, for example, provide
many such examples. Depending on the circumstances
quite often classical techniques such as Kummer’s trans-
formation can lead to accelerated convergence of the
series [1]. Other techniques include the use of Poisson’s
summation formula and integral representations. Here
in the time partitioning method rapidly convergent series
representations are used in different time regimes. No
further measures are necessary to accelerate the con-
vergence of the GFs that are used here.

For background materials on heat conduction we
refer the readers to [2,3,7]. Refs. [2,3] provides extensive
background on the use of GFs in solving heat conduc-
tion problems. Both short time and long time GFs are
listed in [2,5]. It has served as a benchmark for heat
conduction solutions for many years. GFs are briefly
addressed in [7], along with other general approaches to
solving heat conduction problems.

This paper is organized as follows. In Section 2
we present the formulation of the problem. Section 3
deals with the implementation of the time partitioning
method. Short time and long time GFs are introduced
in the appropriate integrals which are manipulated an-
alytically. A scheme by which an optimum partition time
can be determined is introduced and a method by which
the optimum partition time may be estimated is given.
The effects of initial condition and volumetric energy
generation are studied. Section 4 contains numerical
results and discussions, and Section 5 contains the
summary and conclusions.

2. Temperature in a rectangular parallelepiped

Consider theregion 0 < x < L,0 <y < W,0<z< H
in the three-dimensional space. The temperature 7'(x,y,
z,t), for constant material properties and in the pres-
ence of volumetric heat generation, satisfies the heat
equation
T T 0T 1 10T
—t+—+—+- t)———=0 1
2 T Tz +trgbnyzt) = = (1)
where k is the thermal conductivity; «, the thermal dif-
fusivity; and g(x,y,z,¢), the volumetric energy genera-
tion. We impose the initial condition

T(x,y,z,O):F(x,y,z) (2)

and the boundary conditions of
T(0,y,z,t) = f(y,2z,t), T(L,y,z,t) =T(x,0,z,1)
=T(x,W,z,t) = T(x,»,0,1)
=T(x,y,H,t)=0 (3)
The GF G(x,x',y,)',z,7,t — 1) for the problem above
is governed by
2 2 2
%7?+%7§+%7§7é66—?:0, t>1 (4)
with the initial condition at t =7
G(x,x',»,y,2,7,0) =6(x —x")o(y — y)d(z — Z) (5)
and the isothermal boundary conditions
G(0,x", 3, 2,2t —1) = G(L,X',y,)' 2,2/, t — 1)

/ / /
X, X 707J’>Z72J_ T)

/ / /
Xy X W7y7Z7Z,f_ T)

x7xl7y7yl707zlvt_ T)

PN -

xaxlayvy/aHaZ,7t_ T)
(6)

For a homogeneous parallelepiped it is known that
G(x,x',y,y,z,Z,t) can be expressed as the product of
three one-dimensional GFs

G(x,x', v,y 2,7, t — 1) = Gy (x,x',t — 1)Gy(y, ¥, t — 7)

X Gz(Z7Z/,t—T) (7)
where Gy (x,x',¢t — 1) satisfies
PGy 103Gy
2w A ®
G (3, 0) = 3(x — ) (9)
GX(O,X/,t) :Gx(L,x/7t) =0 (10)

(Gy(y,y',t — 1) and Gy(z,7,t — 1) satisfy similar equa-
tions.) Such one-dimensional GFs can be found in [2,5]
in various forms.

It is known [2] that the temperature T'(x,y,z,¢) sub-
ject to the initial and boundary conditions given be Egs.
(2) and (3) can be expressed as
T(x7y727 t) = Tb.c.(xayvz7 t) + En(xa.%zv t)

+Tg(x7y7zat) (11)

where

! 0 0,t—
Toe(x,p,2,1) = a/ f0,2,17) dficX(xé ; 2
-0 X

' w H
></ / GY(yvy/J_T)
y=0 JZ=0

X Gz(z,Z,t — 1)dy d7 (12)
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L W eH
Tin(x7y7z7 t) = / / / F(x,7yl7z,)GX(x7xl7 t)
¥=0 Jy=0 Jz=0

X GY(yvyl7t)GZ(Z7Z/7t)dxldyle, (13)

L
L L
T x'=0 Jy'=0 !

0
X GX(XJC/,t— T)GY(%J’J— T)
X Gyz(z,7,t —1)dx'dy/ d7 (14)

Ty(x,y,z,t) = Xy, 7 1)

We note that T, (x,y,z¢) above represents the tem-
perature due to the nonhomogeneous boundary condi-
tion, T, (x,y,z,t) represents the temperature due to the
initial condition, and T,(x,y,z,t) represents the temper-
ature due to volumetric energy generation.

For general boundary and initial conditions and vol-
umetric energy generation, the above integrals for Ty,
Tin, and T, must be computed numerically. We shall
address the question as to how such numerical compu-
tations should proceed in general with the method of
time partitioning later. Let us now consider the simpli-
fied conditions:

f(v,z,t) = Ty = constant
F(xJaZ):O (15)
g(x7y727 t) = &0 — constant

These simplifications enable us to carry out most of our
computations analytically and illustrate better how the
method of time partitioning works.

Let u =t — © we can now rewrite Egs. (12) and (14)
(which respectively solve the problems X11B10Y11B10-
Z11B10T and X11B00Y11B00Z11B00T0G1)

Gy (x,0,u)

t w
Tb.c.(x7y727 t) = OCTO/ ; / Gy(y,y’,u) dy’
y=0

u=0 X

X /H Gz(z,7 ,u)dz' du (16)

To(x,y,z,1) = ocgo/ GXxxu
u=0 Jx'=
X / Gy(v,y',u)dy
y'=0

H
X / Gz(z,7,u)dz' du (17)
Z

=0

(Notice that Tj,(x,y,z,¢) now is identically zero.) The
corresponding expressions for the heat fluxes are given
by the negatives of the spatial derivatives multiplied by
k. For example, the heat flux gy .(x,»,z,¢) in the x-
direction corresponding to T (x,y,z,¢) above is given
by

t aZG X, 0714
CIb.c.x(an’7Z7 t) = —O(kTO /1:0 %

w
X / Gy(y,y ,u)dy
y’

=0

"
X / Gz(z,7 ,u)dz' du (18)
Jz=0

We shall use such expressions for the heat fluxes and
present some numerical results later.

3. The method of time partitioning

In this section we shall illustrate the method of time
partitioning by considering the computation of Ty, (x, y,
z,t) given in Eq. (16). For brevity we shall drop the
subscripts b.c. The expression involves integration with
respect to u from 0 to . We partition the interval (0, ¢)
into the subintervals (0,7,) and (¢,,¢), where ¢, is a time
partitioning parameter, and use the short time and
long time expressions for the GFs in the respective
subintervals. We then consider the computational prob-
lems.

3.1. Short time and long time Green’s functions

In the subinterval for u in (0,
may be represented by

t,) the short time GFs

Gy (x,x,u) =~ G5 (x, %, u) (19)
GY(yay/7u) = Gi(yvylau) (20)
Gy(z,7,u) ~ G (2,7 ,u) (21)
where [2]
M
Gy (x,x ,u) = Z (K2mL +x — X', u)
m=—M
— K(2mL +x+x',u)) (22)
N
G?’(yay/au) = Z (K(an+y7ylvu)
n=—N
—KQ@nW +y+y,u)) (23)

P
Giler ) = 3 (K(pH +2—2,u)
p=—P
—K(2pH +z+7,u)) (24)

and

L exp(—w?(dow)) (25)

Kw.x) (4omu)

Exact expressions are recovered as M, N and P are al-
lowed to go to infinity.
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The expressions given in Egs. (22)-(24) can be de-
rived using the method of images or the method of
Laplace transforms. These expressions converge rapidly
for small ou/L* as only a few terms are needed for ac-
curate results; that is, M, N and P need be only one or
two for accurate values.

In the subinterval for u in (z,,¢) (¢ > t,) we have the
representations for the GFs obtained by eigenfunction
expansions,

p B x
L ~Z —p2 2y i Pm*
Gy(x,x' u) ~ 7 ; exp(—f;om/L*) sin 7
. B.x
26
x sin =7 (26)
GL(J’ Viu) ~ 3 XN: eXp(—ﬁzau/W2) sinM
e B w n=1 ! w
By
nz 2
x sin=z (27)
GL(z,7,u) ~ 2 i exp(—fou/H?) sin&
Z\“r< — H p ) H
J
X sinﬁpz (28)

H

where i, = ¢/m and M, N and P need not be the same as
those in Eqgs. (22)-(24). These representations are valid
for all u except near u =0, but are most computationally
efficient for ow/L?, ou/W? or au/H? not too small.

Let us introduce the functions

9GS (x,0
T (x,p.2,0) = OﬂTo/ %
0 X

w
x / Gy (v, u)dy
}/

/=0
"

X / Gi(z,7,u)dz du, t<t, (29)
Z/=0

" 9Gk (x,0,u)

w
Ty, (x,3,2,t,t,) = aTo/ P~ / Gy (v, u)dy
X =0

p

H
X/ Gy(z,2,u)d du, t>1, (30)
J2Z=0

Thus, given #,, we can write
Tb-C-(xvyazvt) = Tbs.c.(x7y7z7t)7 tgtp (31)

Tb.C.(x7yyz7 t) = Ts(x7y7zy tp) + TL(xvy7Z7 t7 tp)7 > tp
(32)

Steady state solutions are obtained by letting ¢ go to
infinity in Eq. (32). The expressions in Egs. (29) and (30)
represent respectively the short time and long time
contributions to Ty (x,,z,¢), which are considered in
the next two sections.

3.2. Short time computation

In this section a simple approximation is used. When
the series in Eqs. (22)-(24) are substituted into Eq. (29)
and are truncated, errors arise due to the y'- and z'-in-
tegrations as well as the u-integration. Consider the y/'-
integration in Eq. (29). Substitute the truncated small
time GF G5

Gy(v.y,u) =~ K(y—y,u) — K(y+y,u)
+KQW =y 4y u) = KQ2W —y =y u)
+KQ2W +y—y,u) (33)

into the y/-integral to obtain

w
/ . Gy(v.y,u)dy =1 —E(y) —E(W —y)
V=

+EW+y)+EQW —y)

- %(E(ZW +3)+EGBW —y))

where

E(w) = erfc( \/;%) (35)

and erfc denotes the complementary error function [1].
The function E decays rapidly as w/(4uu)'/? increases.
(Notice that 0 < y < W.) Thus in this simple approxi-
mation we truncate the right side of Eq. (34) after the
“1” and work with the dimensionless time ou/W? up to
no higher than 0.05 in practice for the short time GFs.
Similar arguments can be made for G5. With the y'- and
Z-integrals being replaced by unity we have in essence
replaced the three-dimensional problem by a one-
dimensional problem for short time.

We now consider the u-integrations for 75, (x,y,z,1).
We take

G (x, X u) = K(x — X, u) — K(x + X, u)
—KQL—x—xu)+ KQL—x+x',u)
+KQ2L+x—x"u)+ [KQ2L+x+ X, u)]

(36)

(through second reflections). As the source term is taken
to be x' =0, the left end of the interval of interest, the
reflection at the left end is more significant than that at
the right end and there is a rearrangement of the order
of magnitude of the terms. Thus it is advantageous to
add the extra left reflection term (in brackets) in Eq. (36)
which accounts for the third reflection. Substituting Eq.
(36) into Eq. (29) and carrying out the x’-differentiation
and the u-integration leads to, for 1< ¢,
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t
TEC_(X7y,Z,t) 2TO/ (XK(X,M)—(ZL—X)K(ZL—X,M)
u=0

+ (2L +x)K(2L + x,u)) %

o ) ()
+ erfc(%)) (37)

For small ¢t and x not near L the first term in Eq. (37)
alone provides good approximation

X
TS (x,y,z,t :Terfc(—) 38
b.c.( y ) 0 \/‘TOC‘Z‘ ( )
which is the one-dimensional solution for a semi-infinite

solid.

To account for the three-dimensional effects we in-
clude the functions E(y) and E(W —y) and similar
functions of z in the y/- and Z-integrations in Eq. (29).
We have, instead of Eq. (37),

t

Btz = T [ (K - QL -0KEL - xu)
u=0

+ (2L +x)K(2L + x,u))

x S(y,u)S(z, u)% (39)
where
S(y,u):l—erfc(ﬁ) —erfc(%}) (40)
S(zyu) ~1— erfc(ﬁ) - erfc(%) (41)

Expanding Eq. (39) above and dropping higher order
terms leads to

T, (x,,2,0) = To{ / ;O(xK(x, u) — (2L — x)K (2L — x, u)

+ 2L+ DKL+ x) 3 / " (K ()

u —0

— (2L — x)K(2L — x,u) + (2L + x)K (2L

+x)) Zerfc(\/%) %+ /uioxK(L u)

2 & 7; 7 du
X erfc([ ——= |erfc| == | —
;; <\/4ocu) <\/4ocu) u

(42)

where
n=y, n=W-y, rn=z n=H-z (43)

We see that for small # and for y not near zero or W and
z not near zero or H, S(y,u) and S(z,u) in Egs. (40) and

(41) can both be approximated by unity and hence the
short time computation reduces to the one-dimensional
expression in Eq. (37). Also, for small # and x not close
to L, Eq. (37) further reduces to the well-known result in
Eq. (38). Differentiating Eq. (38) with respect to x and
setting x = 0 leads to

kTy
ot

Toex(0,1) = (44)

Consider the case of small time but for y and z near
an edge, say y = z = 0. For small y and z we have from
Eq. (39) or (42)

t

Tbs,c.(x7yvzvt) =~ TO/ XK(X,M)

u=0

ol gl

This equation gives the exact solution for the octant
x>0, y>0, z>0 with temperature 7, on x =0 and
zero temperature along y = 0 and z = 0. Differentiating
Eq. (45) above with respect to x yields

t 2
qﬁ.c.x(xvyvza t) ~ —kTy /u:()]((x7 u) (] _m)

ol g i) o

In the general case it is possible to pursue the com-
putation analytically using Eq. (42), but we shall omit
the details here. Some numerical results on the three-
dimensional improvements using Eq. (42) and based on
numerical integrations will be reported later in the

paper.

3.3. Long time computation

We now return to Eq. (30) for T, (x,»,z,1,¢,). With
the long time GF G% and G} given in Egs. (27) and (28)
the y/- and Z-integrations can be carried out to get

w
/ Gy(v,y,u)dy
Yy

S =0
4§ exp(—Roow/ W) sin(B,y/W) n odd
07 n even
(47)

H
/ Gs(z,7 ,u)dZ

-0
_ 4211::l ﬂlpexp(fﬁ;au/Hz)sin(ﬁpz/H) p odd
0, p even

(48)
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Performing the u-integration in Eq. (30) now results in

p

TbC X, p,2,1) = /
b m=1 n= lnddp lndd

X exp(—a,,,0t) founp (X, , ) du
=2 >, D Swlora)
m=1 n=1o0dd p=1o
« eXp( wmnn“t(x)a): eXp( mnnat) (49)
where
Fo,9,2) = 22500 S /1) s/ W)
x sin(f,z/H) (50)
= Bo /L’ + B/ W + B /H (51)

mnp

It is seen that there are two triple series in Eq. (49)
above. The first triple series (associated with ¢, in the
numerator) is slowly convergent as ¢, tends to zero. The
terms in the series then decay like /5,8, mnp, i.e., they
decay algebraically. The situation becomes even worse
when one wishes to compute the heat fluxes, for then the
terms are multiplied further by §,, B, or B, through
differentiation with respect to x, y or z and the decay
becomes even slower, if at all.

The difficulty associated with small ¢, above is cir-
cumvented by the method of time partitioning in that
the short time contribution is treated by the short time
GFs. The right-hand side of Eq. (49) converges rapidly
for £, bounded away from zero, owing to the exponential
decay of the factors exp(—w?, at,) and exp(— at) for

mnp

large m, n and p. More specifically, since
15 =3.06E-7, e =206E-9, e =103E-10
(52)

comnp

we may, by restricting the arguments in the exponential
to an appropriate value, ensure the solution to be at least
as accurate as these values. For example, by choosing
the argument to be 20 (as done for the computations
given below), the error in the values should be less than
E—10. Notice that the denominator also reduces the
contribution of the larger values of m, n and p.

3.4. The optimum partition time t,

For a general parallelepiped whose L, W and H may
not be all equal, one can have partition times oz, /L2,
atyy/W? and oty /H?. The parameters t,, t, and f;
subdivide the interval (0, 7) into four subintervals in each
of which the appropriate short time and long time GFs
for Gy, Gy and G are to be substituted. Alternatively,
when L, W and H do not differ appreciably, we may use

a single partition time af,/L*. We now consider the case
with a single partition time and show how to optimize it.

As discussed earlier, given a set of truncated short
time GFs, we can compute T3, (x,y,z,¢) for az/L* up to
at,/L*. For small ot,/L* the error is small but then the
computation for T\, (x,y,z,1,¢,) requires large number
of terms. We wish to determine the optimum ¢, i.e.,
the largest ¢, such that 7.5, (x,y,z,,¢,) remains accurate
to prescribed accuracy. A scheme to accomplish this is
given below.

We select a sequence tg’) such that té”“) ~ 2t§,">,
starting with s small 7,. We fix (x,y,z) and some large ¢
(which may be taken as infinity if a steady state solution
exists). We compute, either analytically or numerically,
the sums

TS (0,2, 4) + TE, (x,3,2,4,1%)

as n increases and compare the consecutive sums. For
small # the differences between the consecutive sums will
be small. As n increases differences between the consec-
utive sums increase due to errors in the short time
contributions (as the error in the long time contribution
is controlled). The first » at which the deviation of the
sum at £"*) from that at (" exceeds the prescribed error
tolerance determines the optlmum t, given by z") It
should be noted that the optimum #, depends on the
observation point (x,y,z).

We now present a method by which the optimum
partition time may be estimated. Consider a semi-infinite
body subject to a step change in temperature at the
surface x = 0 (the X10B1TO problem). The solution is
given in Eq. (38) with 7; = 1. For an interior point it
takes a dimensionless time az/x* =0.012 to cause a
temperature rise of one part in 10'°. We shall refer to
this as the “wave time”. For the three-dimensional
problem X11B10Y10B00Z11B00B0O0TO the solution at
(x,y,z) may be approximated by the one-dimensional
solution until the two- or three-dimensional effects reach
that point. Assuming that x<y<L/2 and y<z, the
distance from (x, y, z) to the nearest boundary is given by
min(x? +1?, x> +2*) = x> +)*. We suppose that the
speed of propagation of three-dimensional effects is gov-
erned by ot/(x* +)?) = 0.012 and hence ¢ = 0.012(x> +
) /e = t;. Thus the one-dimensional approximation is
accurate for <. and ¢, gives the optimum time ¢, at
which the solution ceases to be one-dimensional and
errors due to three-dimensional effects begin to emerge
(see the discussions in Section 4).

3.5. Temperature due to volumetric energy generation and
initial condition

The temperature expression for 7T,(x,y,z,t) due to
volumetric energy generation given in Eq. (14) may be
rewritten as
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Tg(xvy»zvt) = Tgs(xvyzz»t)7 tgtp (53)
Tg(x7y7z7 t) = T;(X,y,z, tp) + TgL(x7y7Z7 ta tp) t> tp

(54)
where

xxudx

T(xy,zt go/ /
u=0

X / GY()/L)} 7”
y'=0

X /H G (2,7, u)dZ du (55)

// Gy (x,x',u) dx

X/ Gy (v, ,u)dy
Jy=0

T(xy,ztt

H
X / Gs(z,7 ,u)dZ du (56)

=0

With G$ given in Eq. (36), G5 given in Eq. (33) and
a similar expression for G5 we can carry out the
integrations with respect to x’, ' and Z in Eq. (55) and
obtain

TS (x,y,2,1) ~%/:0(1 —E(x)— E(L—x)

—E(y)—EW-y)—E(Z)—E(H —z))du

(57)

where only low order terms are retained. Carrying out
the u-integration then yields

ago X
TS(x, v,z ¢ t — 4¢(17) erfc
S =" i a@erte( )

2 L*X) 2 < y )
+i“erfc +1i“erfc
( Vot Vot
Pl () +Pere( 2z
+i“erfc +i“erfc
( 4ot 4ot

+izerfc(t1/4_7tz>} (58)

For definition of i*erfc (see [1] or [2]).

Similarly, with the long time GFs given in Eqgs. (26)-
(28) we can carry out the x'-integration, and substitute
into Eq. (56) along with the y’- and Z-integrations in
Eqgs. (47) and (48) and obtain

TH(x, 2,0, 1y) = / >y oy

» m=1odd n=1o0dd p=1odd

X exp(_(umnpau) mnp(x Y,z )

M N P

= E Z Z f;nnp(x7y7z)

m=10dd n=10dd p=1odd

y exp(—ay,,,01,) — exp(—w;, o)

O((j)rzrmp
(59)
where
Fomp32) =SB Gin(g /L) sin(B,y/ W)
mnp\7*s s ﬁmﬁnﬁp m n.
x sin(f,z/H) (60)
w2, = Bo/L* + B WP + B/ H (61)

An optimum partition time #, may be obtained using the
same scheme in Section 3.4, regardless whether the in-
tegrations are done analytically or numerically as in the
case when g(x,y,z,¢) is not a constant.

Due to more general initial condition the temperature
Tin(x,,2,t) is given by Eq. (13). This expression involves
integrations with respect to x’, ) and Z but not with
respect to 7. A partition time £, may be introduced such
that the short time and long time GFs are substituted for
t<t, and ¢ > t, respectively, resulting in the expressions
T3 and Tt. An optimum ¢, may be obtained by finding
the first ¢,, as it increases from zero, at which T3 be-
comes unequal to Tt to a prescribed error.

4. Numerical results and discussions

We first consider the temperature 7; . at the center of
a cube with side length L. The steady state temperature
there is known to be 7;/6. It is seen in Section 3.2 that,
given a set of truncated short time GFs, approximations
to T3, (x,,z,t) can be obtained for short time 7 up to 7.
One does not know in general, however, the precise er-
rors in such approximations, except that they tend to
zero as t, tends to zero. On the other hand, we see in
Section 3.3 that, given a f,, errors in the long time
contribution Tt (x,y,z,¢,t,) can be controlled by prop-
erly restricting the arguments of the exponentials in the
series.

Table 1 shows the results for various dimensionless
partition times az,/L?. These partition times are given in
column 1. The second column shows the short time so-
lutions 73, (0.5L,0.5L,0.5L,t,)/ Ty given by Eq. (3) which
increase as at,/L* increases. The fourth column shows
the number of terms in the long time computations for
TL. (0.5L,0.5L,0.5L, 00,1,)/Ty, the results of which are
given in column 3. Column 5 gives the sum of columns 2
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One-dimensional approximation using time partitioning to determine the center, x = 0.5L, y = 0.5L, z = 0.5L, temperature of a cube

Dimensionless
time at,/L*

Dimensionless short
time solution 7.5_ /Ty

Dimensionless long

time solution

Number of terms for
convergence of the long

time solution

Sum of short and long

time solutions
(Tsc. + T&c.)/TO

True solution
T; b.c. / TO

0.001 0.0000000000 *0.1666666666
0.0025 0.0000000000 *0.1666666667
0.005 0.0000005733 *0.1666660934
0.006 0.0000050103 0.1666616564
0.01 “0.0004069520 0.1662600459
0.025 *0.0253473187 0.1425826072
0.05 “0.1138441966 0.0767761685
0.1 “0.2627562698 0.0178042207
0.25 “0.4460122207 0.0002098182
0.5 *0.4958800056 0.0000001280
0.75 “0.5036468697 0.0000000000
1 “0.5119291152 0.0000000000

*5950 “0.1666666666 0.0000000000
*1499 “0.1666666667 0.0000000000
534 “0.1666666667 0.0000005733
398 0.1666666667 0.0000050103
184 “0.1666669979 0.0004066209
45 “0.1679299259 0.0240840595

17 “0.1906203651 0.0898904982

7 *0.2805604905 0.1488624461
“0.4462220388 0.1664568486

*0.4958801335 0.1666665388

—_—— e —

*0.5036468697
*0.5119291152

0.1666666667
0.1666666667

The long time solution was truncated when the exponent term reached a magnitude of 20. Entries preceded by an asterisk need not be

computed. The bold values represent the optimum partition time.

and 3 and is the steady state solution. Because of the
errors in the short time results in column 2, the sum is
not constant in column 5, except for ¢ equal to or less
than the optimum #, (which is bold). Column 6 shows
the transient temperatures at various ot/L* = at,/L* ob-
tained by subtracting column 3 from the optimal steady
state values given in column 5. These values are accurate
to about 10 decimal places.

We now make some further observations regarding
Table 1. For at, /L? <0.006, the numerical values for the
steady state solution are accurate to nine digits. At lar-
ger values of af, /L2, the errors are due to the short time
contributions. The amount of computation for large
time contributions decreases with increasing af,/L>. By
increasing af,/L* from 0.001 to 0.006, the number of
terms needed in the long time series drop from 5950 to
398. Prior to az,/L? = 0.006, the entries in column 3,
which are used to obtain the steady state solutions, need
not be computed. This is because the steady state results
in columns 5 remain the same, independent of ¢, for the
latter through a#,/L? <0.006 and thus can be obtained
from the entry at at,/L* = 0.006. We shall precede such
entries with an asterisk to indicate the fact that they need
not be computed. As noted before, transient solutions
for at,/L* > 0.006 are given by subtracting column 3
from the steady state solution given in column 5 at
at,/L* = 0.00 whereas those for az,/L* < 0.006 are those

given in column 2. We note also that this #, corre-
sponding to at,/L?> = 0.006 plays the role of the opti-
mum ¢, discussed in Section 3.4. Rows corresponding to
an optimum partition time are bold in the tables. We
note that in terms of the estimated optimum partition
time ¢ we have at; /L* = 0.006.

We have studied the temperature Ty (x,,z,¢) along
the centerline y = 0.5L, z = 0.5L at different values of
x/L and found that as x/L increases, the onset of de-
tectable error in the steady state temperature computa-
tions is delayed with time. This is to be expected since
the time required for heat to diffuse through the material
is inversely proportional to the square of distance.
Conversely, once an error becomes measurable in each
of the calculations, the magnitude of the error becomes
significantly greater, at larger x/L values, for the same
dimensionless times. This is due to the edge effects of the
parallelepiped, since the point of interest is closer to the
T = 0 surfaces than to the 7 = T; surface with a large
value of x/L.

Table 2 shows the temperatures T . in a cube where
the observation point (x,y,z) is off the centerline. This
causes the side and edge effects of the cube to be much
more pronounced. We have the optimal time in this case
of at; /L* = 0.0015.

We present in Table 3 the heat flux at the heating
surface in the boundary condition case. One interesting
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One-dimensional approximation using time partitioning to determine the center, x = 0.25L, y = 0.25L, z = 0.25L, temperature of a

cube

<
e

p>

Dimension- Dimensionless Dimensionless long  Number of terms for Sum of short and long True solution
less time short time solu- time solution convergence of the long time solutions Toe./To
at,/L? tion 75, /To T /Ty time solution (TS, + T-) /Ty

0.0005 0.0000000000 *0.3072056232 *33366 *0.3072056232 0.0000000000
0.001 0.0000000227 *0.3072056006 11722 *0.3072056233 0.0000000226
0.0015 0.0000050103 0.3072006130 6365 0.3072056233 0.0000050103
0.0025 *0.0004069520 0.3067988368 2940 *0.3072057888 0.0004067864
0.005 *0.0124193307 0.2949398938 1027 *0.3073592245 0.0122657294
0.01 *0.0770998717 0.2358973730 353 *0.3129972448 0.0713082502
0.025 *0.2635524773 0.1070520385 84 *0.3706045158 0.2001535847
0.05 *0.4291952691 0.0371669176 30 *0.4663621868 0.2700387056
0.1 *0.5760594979 0.0067605440 11 *0.5828200420 0.3004450792
0.25 *0.7118079976 0.0000742459 2 *0.7118822435 0.3071313773
0.5 *0.7469179802 0.0000000452 1 *0.7469180255 0.3072055780
0.75 *0.7514071819 0.0000000000 1 *0.7514071819 0.3072056232
1 *0.7553706246 0.0000000000 1 *0.7553706246 0.3072056232

The long time solution was truncated when the exponent term reached a magnitude of 20. Entries preceded by an asterisk need not be
computed. The bold values represent the optimum partition time.

Table 3
One-dimensional approximation using time partitioning to determine the dimensionless heat flux in the x direction, atx = 0, y = 0.5L,
z=20.5L, in a cube

Dimension- Dimensionless short Dimensionless long Number of terms for Sum of short and long True solution
less time time solution time solution convergence of the long time solutions Grve L/KTy
aty /L oo L/KTy qr o L/KTy time solution (@e + @0 )LIKT

0.001 17.84124116 *—15.39512228 11722 *2.44611888 17.84124116
0.0025 11.28379167 *—8.83767280 *2940 *2.44611887 11.28379167
0.003 10.30064539 —7.85452651 2251 2.44611888 10.30064539
0.005 *7.97884561 —5.53272742 1027 *2.44611819 7.97884630
0.01 *5.64189584 —3.19642463 353 *2.44547121 5.64254351
0.025 *3.56824823 —1.17765461 84 *2.39059362 3.62377349
0.05 *2.52313253 —0.36830740 30 *2.15482513 2.81442628
0.1 *1.78428611 —0.06179511 11 *1.72249100 2.50791399
0.25 *1.16971314 —0.00065997 2 *1.16905317 2.44677885
0.5 *1.01384843 —0.00000040 1 *1.01384802 2.44611928
0.75 *0.99492128 0.00000000 1 *0.99492128 2.44611888
1 *0.97929708 0.00000000 1 *0.97929708 2.44611888

The long time solution was truncated when the exponent term reached a magnitude of 23. Entries preceded by an asterisk need not be
computed. The bold values represent the optimum partition time.
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Three-dimensional approximation with numerical integration using time partitioning to determine the center, x = 0.5L, y = 0.5L,

z = 0.5L, temperature of a cube

convergence of the long

Sum of short and long

time solutions
(e + T )/ To

True solution
The./To

Dimension- Dimensionless short Dimensionless long Number of terms for
less time time solution time solution

oty /L T8, /T L /Ty time solution
0.00500 0.0000005733 *0.1666660934 “1027
0.01000 0.0004066209 *0.1662600459 *353
0.02500 0.0240840593 *0.1425826072 “84
0.05000 0.0898904982 0.0767761685 30
0.10000 “0.1488624431 0.0178042207 11
0.25000 *0.1664519853 0.0002098182 2
0.50000 “0.1666548337 0.0000001280 1
0.75000 *0.1666547890 0.0000000000 1
1.00000 “0.1666547878 0.0000000000 1

“0.1666666667
*0.1666666668
*0.1666666665

0.1666666667
“0.1666666638
*0.1666618035
*0.1666549617
*0.1666547890
*0.1666547878

0.0000005733
0.0004066208
0.0240840594
0.0898904982
0.1488624460
0.1664568485
0.1666665387
0.1666666667
0.1666666667

The long time solution was truncated when the exponent term reached a magnitude of 20. Entries preceded by an asterisk need not be
computed. The bold values represent the optimum partition time.

feature of note in Table 3 is the magnitude of the short
and long time solutions at very small dimensionless
times. As the dimensionless time tends toward zero, the
short time solution tends toward infinity. The long time
solution must therefore tend toward negative infinity,
since the steady state heat flux at x =0 has a constant
value of 2.446118877, and is the sum of the short and
long time solutions. This “instability”” at very small di-
mensionless time for the heat fluxes on the heated sur-
face was observed when the maximum exponent was
taken to be —20. For the results in Table 3 we have
increased the maximum value of the exponent to —23.
We mention that, as in the case of temperatures, very
accurate transient heat fluxes may be computed from the
steady state heat flux in column 5 at small #, (or for
at,/L* = 0.0025 here) and the long time components
of the heat fluxes in column 3. Here we have af /L* =
0.003.

In Table 4 we present more accurate results for the
short time temperatures by using Eq. (42) that contains
additional terms and carrying out the integrations nu-
merically. The details of the computations are discussed
in [5]. It is seen that the short time solutions remain
accurate over a larger range of af,/L?. This results in a
larger optimum ¢, corresponding to af,/L* = 0.05 and a
decrease in the number of terms in the long time com-
putations from 1027 to 30. It is seen that the estimated
optimum partition time based on using # is too con-
servative and no longer valid when more terms are used
in the short time component.

In Tables 5 and 6 we present numerical results for the
temperature 7, at the center of a cube and the corre-
sponding heat flux on a face due to a uniform heat
generation go. The method of time partitioning proceeds
similarly as in the boundary condition case. The results
in Table 5 for the temperature at the center of a cube due
to internal energy generation are comparable to those in
Table 1 for the boundary condition case with a same
optimum partition time. The heat fluxes on a face of the
cube due to internal energy generation given in Table 6
and those due to the heating of a face of the cube given
in Table 3 are also similar, with the same optimum
partition time.

We finally remark that when the observation point is
near a boundary y = 0 or z = 0 say, ¢ is small and the
one-dimensional approximations become invalid quickly.
Work is presently in progress to treat such two- or three-
dimensional problems effectively.

5. Summary and conclusions

1. Verification of large finite element and control
volume codes is supported. This is done by providing a
method for finding extremely accurate numerical val-
ues for the linear transient heat conduction equation.
Temperatures and heat fluxes are both calculated. The
geometry of a cube is considered with temperature
boundary conditions on all six surfaces. The classical
method of separation of variables builds the solution
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Table 5
One-dimensional approximation using time partitioning to determine the center, x = 0.5L, y = 0.5L, z = 0.5L, temperature of a cube
with volume energy generation

Dimension- Dimensionless short ~ Dimensionless long ~ Number of terms for Sum of short and long True solution

less time  time solution time solution convergence of the long  time solutions kT,/goL?
at,/L? kT3 /goL? KTy /goL? time solution k(TS +T))/gL?

0.0025 0.0025000000 *0.0537128298 *1875 *0.0562128298 0.0025000000
0.005 0.0049999988 *0.0512128310 “642 *0.0562128298 0.0049999988
0.006 0.0059999858 0.0502128440 486 0.0562128298 0.0059999858
0.01 “0.0099971115 *0.0462157170 229 *0.0562128285 0.0099971128
0.025 *0.0241548870 *0.0320325043 51 *0.0561873913 0.0241803255
0.05 *0.0388948227 *0.0157789947 20 *0.0546738174 0.0404338351
0.1 “0.0306960026 *0.0036088667 7 *0.0343048692 0.0526039632
0.25 *—0.1697883407 *0.0000425180 1 *—0.1697458227 0.0561703118
0.5 *—0.7578355602 *0.0000000259 1 *—0.7578355342 0.0562128039
1 *—2.2947756723 *0.0000000000 1 *—2.2947756723 0.0562128298

The long time solution was truncated when the exponent term reached a magnitude of 20. Entries preceded by an asterisk need not be
computed. The bold values represent the optimum partition time.

Table 6
One-dimensional approximation using time partitioning to determine the dimensionless heat flux in the x direction, at x = 0, y = 0.5L,
4z = 0.5L, in a cube with volume energy generation

R
=S

Dimensionless
time oz, /L?

Dimensionless
short time solu-
tion ¢3, . L/kTy

Dimensionless
long time solu-
tion g, . L/kT,

Number of terms for
convergence of the long

time solution

Sum of short and long
time solutions

(@ + @0 )L/KTy

True solution
GrveL/KTh

0.001 —0.0356824823 *—0.2461908319  *7268 *—0.2818733142 —0.0356824823
0.0025 —0.0564189584 “—0.2254543559  *1875 *—0.2818733142 —0.0564189584
0.003 —0.0618038723 —0.2200694419 1388 —0.2818733142 —0.0618038723
0.005 *—0.0797884561 —0.2020848645 642 *—0.2818733206 —0.0797884497
0.01 *—0.1128379167 —0.1690468831 229 *—0.2818847999 —0.1128264311
0.025 *—0.1784120559 —0.1056567135 51 *—0.2840687694 —0.1762166008
0.05 *—0.2521785811 —0.0499182734 20 *—0.3020968546 —0.2319550408
0.1 *—0.3528821768 —0.0113391240 7 *—0.3642213008 —0.2705341902
0.25 *—0.5139350419 —0.0001335744 1 *—0.5140686163 —0.2817397398
0.5 *—0.6312536196 —0.0000000815 1 *—0.6312537011 —0.2818732327
1 *—0.7290967103 0.0000000000 1 *—0.7290967103 —0.2818733142

The long time solution was truncated when the exponent term reached a magnitude of 23. Entries preceded by an asterisk need not be
computed. The bold values represent the optimum partition time.

surface oscillates through positive and negative values
as more terms in the summations are included. In con-
trast, the proposed method gives extremely accurate

from two parts, steady state and transient. However,
in the classical steady state solution given by Carslaw
and Jaeger [3], the computed heat flux at the heated



D.H.Y. Yen et al. | International Journal of Heat and Mass Transfer 45 (2002) 4267-4279 4279

values (to 9 or more significant figures) without oscilla-
tion.

2. The example of a cube with temperature bound-
ary conditions is treated but the method can be em-
ployed for a parallelepiped with heat flux and convective
boundary conditions in the same manner.

3. New insights are given for the calculation of the
steady state component, which is usually the most dif-
ficult part.

4. A criterion is presented for determining the dura-
tion for the two- and three-dimensional effects to affect
the solution. This criterion is based on an accuracy of
one part in 10'® but can be made more or less if desired.
The criterion is oz/(x* + y*) = 0.012 where x and y are
less than z and x < L/2 and y < W /2. With this method
the extra computation to generate values with errors
about one part in 10 is less than a factor of 10 than that
required for error of one part in 10,000. This contrasts
significantly with the additional effort required to reduce
errors using the finite element method, for example.
Such accurate results are not much more than for errors
several magnitudes greater, unlike for finite element
methods.

5. The method avoids numerical integration for much
of the body, unlike the time partitioning method of Ref.
[5]- Such integration is implicit in the method. However,
without some extensions the proposed method herein
cannot avoid numerical integration for points near the
corners and edges. Such extensions are under develop-
ment and may be the subject of future papers.
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